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This Talk Is Not About 2050...

Optical computing Other far-out technologies



This Talk: HPC and Supercomputing in 2018
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Where are we today?
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Where will we go?
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How will it impact you?



Carnegie Mellon

What Is High Performance Computing?

1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 10°, tera (T) = 10?2, peta (P) = 10?°, exa E) = 10?8

Computing systems in 2010
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Cell phone Laptop Workstation HPC #1 supercomputer
1 CPUs 2 CPUs 8 CPUs 200 CPUs 224,162 CPUs

1 Gflop/s 20 Gflop/s 1 Tflop/s 20 Tflop/s 2.3 Pflop/s

$300 $1,200 $10,000 $700,000 $100,000,000

1 W power 30 W power 1 kW power 8 kW power 7 MW power

Economical HPC

Power grid scenario

= Central servers (planning, contingency analysis)
= Autonomous controllers (smart grids)

= Operator workstations (decision support)
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How Big are the Computational Problems?

1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 10°, tera (T) = 10?2, peta (P) = 10?°, exa E) = 10?8

Matrix-matrix multiplication...
for i=1l:n
for j=1:n
)( for k=1:n
Cli,]] =
Ali,k]*B[k, ]

..running on...

Cell phone Laptop Workstation HPC #1 supercomputer
1 Gflop/s 20 Gflop/s 1 Tflop/s 20 Tflop/s 2.3 Pflop/s
1k X 1k 8k X 8k 16k X 16k 64k X 64k 1M X 1M

8MB, 2s 0.5 GB, 5.5s 2 GB, 8s 32 GB, 28s 8 TB, 1,000s



The Evolution of Performance
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How Do We Compare?

1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 10°, tera (T) = 10?2, peta (P) = 10?°, exa E) = 10?8

In 2010...

Cell phone Laptop Workstation HPC #1 supercomputer
1 Gflop/s 20 Gflop/s 1 Tflop/s 20 Tflop/s 2.3 Pflop/s

...would have been the #1 supercomputer back in...

i;m 4 A

Cray X-MP/48 NEC SX-3/44R Intel ASCI Red Earth Simulator
941 Mflop/s  23.2 Gflop/s 1.338 Tflop/s 35.86 Tflop/s

1984 1990 1997 2002
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If History Predicted the Future...

...the performance of the #1 supercomputer of 2010...

#1 supercomputer
1 Pflop/s

...could be available as

HPC Workstation Cell phone

1 Pflop/s 1 Pflop/s 1 Pflop/s
2018 2023 2036

How do we get here?
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HPC: ExtremeScale Computing

DARPA UHPC ExtremeScale system goals
= Time-frame: 2018

= 1 Pflop/s, air-cooled, single 19-inch cabinet
= Power budget: 57 kW, including cooling

50 Gflop/W for HPL benchmark

Ubiquitous High Performance Computing (UHPC)

Transformational Convergence Technology Office (TCTO)

DARPA-BAA-10-37
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Developing The New #1: DoE ExaScale

Challenges to achieve ExaScale

= Energy and power
= Memory and storage 9

= Concurrency and locality
= Resiliency

Peter Kogge, Editor & Study Lead

Funding Opportun

umber: DE-FOA-0000257
e: Ini

X-Stack: Software for ExaScale
= System software

Fault management

= Programming environments
= Applications frameworks

= Workflow systems

ale C Study with Dr. William Harrod
Application Due Date: 4/2/2010, 11:59 PM Eastern Time C7724, Thissepont o publshet im the

C-7724, This report s published in the

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

X S S <L X S S <

#1 supercomputer #1 supercomputer
2 Pflop/s 1 Eflop/s
2010 2018



Some Predictions for ExaScale Machines

Processors
XRSERLE

= 10 billion-way concurrency

= 100’s of cores per die

= 10 to 10-way per-core concurrency

= 100 million to 1 billion cores at 1 to 2 GHz
= Multi-threaded fine grain concurrency

= 10,000s of cycles system-wide latency

ROADMAP

Memory
= Global address space without cache coherence
= Explicitly managed high speed buffer caches

= 128 PB capacity

= Deep memory hierarchies

04 Community Developed / Provider Supported 03 Community Developed / Community Supported

Programming Models Other [UPC, ARMEI]

Frameworks

Application Element: Algorithms

Application Element: Data Analysis and Visualization
Application Support: Scientific Data Management

Technology
= 22 to 11 nanometers CMOS

= 3-D packaging of dies

= Optical communications at 1TB/s
= Fault tolerance

= Active power management

01 Provider Supplied / Provider Supported

Operating Systems Could e co-developed
Runtime Systems
1/0 Systems

Systems Management
Low-level [RAS, power contral, boot] vendor developed
Higher-level resource mgmt, security, performance co-developed

Programming Models Industry Standard [

Compilers Vendor Ootimized

DpenMP MPI, COF)

02 Provider Supplied / Community Supported

External Environments

Compilers Different models wark
Numerical Libraries Different models work
Debugging Tools Different models work
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International Semiconductor Roadmap

Near-term (through 2016) and long-term (2017 through 2024)

= Process Integration, Devices, and Structures

= RF and Analog / Mixed-signal Technologies for Wireless Communications
= Emerging Research Devices

= System Drivers

2009 ITRS - Technology Trends
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Prediction 1: Network of Nodes

Why?

= State-of-the-art for large machines

= Allows scaling from Tflop/s to Eflop/s
= Designs can be tailored to application
= Fault tolerance

Implications

= Segmented address space

= Multiple instructions, multiple data (MIMD)
= Packet-based messaging

= Long inter-node latencies

%(4(&12%1217@[[\/) Fa N A N A I A
R g1




Prediction 2: Multicore CPUs

Why?

= State-of-the-art CPU design

= Growing transistor count (Moore’s law)
= Limited power budget

IBM Cell BE
8+1 cores
Implications

= On-chip multithreading

= |nstruction set extensions targeting applications
Physically segmented cache

Software and/or hardware managed cache
Non-uniform memory access (NUMA)

Memory Controller

Intel Core i7
8 cores, 2-way SMT

1L b

Memory Controller | Memory Controller

* "J'J'-Pr s

...............

RN RN NN

L~ memory Controller | Memory Controller

Tilera TILE Gx
100 cores

whRH | o Ky T
IBM POWER7 Intel SCC Nvidia Fermi
8 cores, 4-way SMT 48 cores 448 cores, SMT
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Prediction 3: Accelerators

Why?

= Special purpose enables better efficiency
= 10x to 100x gain for data parallel problems
= Limited applicability, thus co-processor

= Can be discrete chip or integrated on die

Implications RoadRunner
= Multiple programming models 2’244800#?8?;(1232'960 Cells
= Coarse-grain partitioning necessary

= Programs often become non-portable

1
\
4
|

= i

=

Rack-mount server components HPC cabinet

2 quad-core CPUs + 4 GPUs CPU blades + GPU blades
200 Gflop/s + 4 Tflop/s Custom interconnect



Prediction 4: Memory Capacity Limited

Why?

= Good machine balance: 1 byte/flop

= Multicore CPUs have huge performance
= Limited power budget

= Need to limit memory size

Implications

= Saving memory complicates programs
= Trade-off: memory vs. operations

= Requires new algorithm optimization

Dell PowerEdge R910 BIUeGene/L Nvidia Tesla M2050 (Fermi)

2 x 8-core CPUs 65,536 dual-core CPUs 1 GPU, 448 cores
256 GB, 145 Gflop/s 16 TB RAM, 360 Tflop/s 6 GB, 515 Gflop/s
1 core: 16 GB for 9 Gflop/s 1 core: 128 MB for 2.8 Gflop/s 1 core: 13 MB for 1.15 Gflop/s

1.7 byte/flop 0.045 byte/flop 0.011 byte/flop



HPC Software Development

Popular HPC programming languages
= 1953: Fortran

= 1973:C

= 1985: C++

= 1997: OpenMP

= 2007: CUDA

Popular HPC libraries S '
= 1979: BLAS Slow change in direction
= 1992: LAPACK

= 1994: MPI

= 1995: ScalLAPACK

= 1995: PETSc

= 1997: FFTW

Proposed and maturing (?)
= Chapel, X10, Fortress, UPC, GA, HTA, OpenCL, Brook,
Sequoia, Charm++, CnC, STAPL, TBB, Cilk,...
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The Cost Of Portability and Maintainability

Matrix-Matrix Multiplication
Performance [Gflop/s]

200 Best GPU code
180 10,000 lines CUDA
160
140
120
100
30 =15 years technology loss
0 Best CPU code
100,000 lines, SSE, OpenMP
40
20 simple C code
4 lines
0 ¢ ! . - .
256 512 1,024 2,048 4,096 8,192

matrix size
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Summary

= Hardware vendors will somehow keep Moore’s law on track
EXASCALE
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= Portable and maintainable code costs performance

(J

l.'

Matrix-Matrix Multiplication
Performance [Gflop/s]

Unoptimized program
= 15 years technology loss
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